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CONVERGENCE OF SECOND-ORDER, ENTROPY STABLE METHODS FOR
MULTI-DIMENSIONAL CONSERVATION LAWS

Neelabja Chatterjee* and Ulrik Skre Fjordholm

Abstract. High-order accurate, entropy stable numerical methods for hyperbolic conservation laws
have attracted much interest over the last decade, but only a few rigorous convergence results are
available, particularly in multiple space dimensions. In this paper we show how the entropy stability
of one such method, which is semi-discrete in time, yields a (weak) bound on oscillations. Under
the assumption of 𝐿∞-boundedness of the approximations we use compensated compactness to prove
convergence to a weak solution satisfying at least one entropy condition.
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1. Introduction

Hyperbolic conservation laws appear in a large variety of applications, including gas dynamics, traffic mod-
eling, multi-phase fluid flow problems, and more; see e.g. [3, 9, 12, 16]. We consider a scalar, 𝑑-dimensional
hyperbolic conservation law {︃

𝜕𝑡𝑢+∇ · 𝑓(𝑢) = 0 ∀ (𝑥, 𝑡) ∈ R𝑑 × R+

𝑢(𝑥, 0) = 𝑢0(𝑥) ∀ 𝑥 ∈ R𝑑
(1.1)

where 𝑢 = 𝑢(𝑥, 𝑡) : R𝑑 × R+ → U is the unknown conserved variable, taking values in some nonempty interval
U ⊂ R, and the function 𝑓 = (𝑓1, . . . , 𝑓𝑑) : U → R𝑑 is the smooth (at least 𝐶3 on U) and possibly nonlinear
flux function. For the sake of simplicity we will assume that U = R.

It is well-known that even if the initial datum 𝑢0(𝑥) is arbitrarily smooth, the solutions of (1.1) may still
be non-smooth [3, 9, 12]. Thus, it is fruitless to look for solutions of (1.1) in the classical sense. Instead these
solutions are sought in a weak sense. A function 𝑢 ∈ 𝐿∞(R𝑑 ×R+) is said to be a weak solution of (1.1) if it is
a distributional solution, i.e.∫︁

R𝑑

∫︁
R+

𝜕𝑡𝑢𝜙+ 𝑓(𝑢) · ∇𝜙d𝑥d𝑡+
∫︁

R𝑑

𝑢0(𝑥)𝜙(𝑥, 0) d𝑥 = 0 ∀ 𝜙 ∈ 𝐶1
𝑐 (R𝑑 × [0,∞)). (1.2)

It is well known (see e.g. [3, 9, 12]) that weak solutions may be non-unique. Thus to single out a physically
relevant solution, the notion of weak solution has to be supplemented with an additional admissibility criterion,
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namely entropy conditions. A pair of functions 𝜂 : R → R, 𝑞 : R → R𝑑 is an entropy pair for (1.1) if 𝜂, the
entropy function, is convex and 𝑞, the entropy flux function, satisfies 𝑞′(𝑢) = 𝜂′(𝑢)𝑓 ′(𝑢). In particular, for every
𝑘 ∈ R we have the well-known Kružkov entropy pair (𝜂𝑘, 𝑞𝑘) given by

𝜂𝑘(𝑢) := |𝑢− 𝑘|, 𝑞𝑘(𝑢) := sign(𝑢− 𝑘)(𝑓(𝑢)− 𝑓(𝑘)), (1.3)

see [14]. Multiplying (1.1) by 𝜂′(𝑢) and using the chain rule we have the following entropy conservation identity
for smooth solutions of (1.1),

𝜕𝑡𝜂(𝑢) +∇ · 𝑞(𝑢) = 0. (1.4)

Due to the possible non-smoothness of solutions of (1.1), the above derivation cannot be rigorously justified for
weak solutions. Instead, motivated by the second law of thermodynamics, the entropy inequality

𝜕𝑡𝜂(𝑢) +∇ · 𝑞(𝑢) 6 0 (1.5)

is imposed. As was shown by Kružkov [14], validity of this entropy condition for all Kružkov entropy pairs
(𝜂𝑘, 𝑞𝑘)𝑘∈R guarantees uniqueness and stability of solutions of (1.1).

1.1. Numerical methods for conservation laws

The nonlinear nature of the equation (1.1) and the fact that its solutions are irregular, can make the construc-
tion and analysis of numerical methods for (1.1) challenging. We outline here some of the available literature
on this subject.

In order to converge to a weak solution satisfying the entropy condition (1.5), the numerical method needs
to satisfy some discrete version of the entropy condition. Finite volume methods (to be discussed in Sect. 2.1
in detail) with this property are called entropy stable. Harten et al. [10] showed that all monotone schemes for
scalar conservation laws are entropy stable with respect to any entropy pair (𝜂, 𝑞). Osher [17] generalized this
to a (presumably) larger class of schemes, the so-called E-schemes. Osher also showed that these E-schemes are
at most first-order accurate. In his papers from 1984 [19] and from 1987 [20], Tadmor laid a general framework
for constructing entropy stable schemes by first constructing entropy conservative methods – schemes satisfying
a discrete version of (1.4) – and then adding numerical diffusion to obtain entropy stability. As he proved in
[20], entropy conservative schemes are generally second-order accurate; even higher-order entropy conservative
schemes were constructed by Lefloch et al. [15]. However, the addition of numerical diffusion to any of these
entropy conservative schemes, in the way suggested in [19,20], degrades the order of accuracy to 1. Following an
alternate approach for higher order entropy stable methods, a discontinuous Galerkin method was designed in
[2]. Convergence analysis of finite volume schemes on unstructured, quasi-uniform meshes for smooth solutions
of first-order systems of hyperbolic balance laws in multiple space dimensions was carried out in [13].

By combining the high-order accurate entropy conservative schemes in [15, 20] with a judiciously chosen
reconstruction method, Fjordholm et al. [4,7] constructed entropy stable methods with an arbitrarily high order
of accuracy, the so-called TECNO schemes. By estimating the amount of entropy dissipated by the method
(i.e., the amplitude of the left-hand side in (1.5)), the authors could derive a priori weak regularity bounds
on the numerical solution, and these bounds, along with the assumption of 𝐿∞-boundedness, were sufficient to
prove convergence of the method in the special case of 𝑑 = 1 space dimensions.

To the best of our knowledge there is no available proof of convergence of a high-order accurate entropy stable
method for a multi-dimensional conservation law. The purpose of the present paper is to prove convergence for
a particular semi-discrete numerical method, namely the second-order TECNO scheme. A convergence proof for
a fully discrete method would be similar but much more involved, since this would lead to much more delicate
computations in deriving the a priori estimates that we require in our convergence argument. We refer to the
earlier work [6] for entropy stable, fully discrete TECNO schemes. Finally, we note that our convergence proof
requires an a priori 𝐿∞ bound on the numerical approximations; a proof of such a bound, while at the same
time retaining the high order of accuracy, seems to be out of reach.
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2. Entropy stable numerical methods

2.1. Finite volume methods

For the sake of notational simplicity we are going to consider the scalar conservation law (1.1) in the particular
case of 𝑑 = 2 space dimensions, although we emphasize that the results in this paper are equally valid for any
number of spatial dimensions 𝑑.

We write (1.1) in the case 𝑑 = 2 as{︃
𝜕𝑡𝑢+ 𝜕𝑥𝑓

𝑥(𝑢) + 𝜕𝑦𝑓
𝑦(𝑢) = 0 ∀ (𝑥, 𝑦, 𝑡) ∈ R2 × R+

𝑢(𝑥, 𝑦, 0) = 𝑢0(𝑥, 𝑦) ∀ (𝑥, 𝑦) ∈ R2.
(2.1)

Here and in the remainder we will denote the components of all vector-valued functions by 𝑓 = (𝑓𝑥, 𝑓𝑦).
One of the most popular discretization frameworks is the finite volume method. The spatial domain R2 is

partitioned into rectangles of the form 𝒞𝑖,𝑗 = [𝑥𝑖−1/2, 𝑥𝑖+1/2) × [𝑦𝑗−1/2, 𝑦𝑗+1/2), where for the sake of simplicity
we use uniform grid sizes 𝑥𝑖+1/2 − 𝑥𝑖−1/2 ≡ ∆𝑥 and 𝑦𝑗+1/2 − 𝑦𝑗−1/2 ≡ ∆𝑦. We denote the midpoint values as

𝑥𝑖 =
𝑥𝑖−1/2+𝑥𝑖+1/2

2 and 𝑦𝑗 =
𝑦𝑗−1/2+𝑦𝑗+1/2

2 . For any quantity (𝑢𝑖,𝑗)𝑖,𝑗∈Z defined on this grid, we define the jump
and average operators

{{𝑢}}𝑖+1/2,𝑗 =
𝑢𝑖,𝑗 + 𝑢𝑖+1,𝑗

2
[[𝑢]]𝑖+1/2,𝑗 := 𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗

{{𝑢}}𝑖,𝑗+1/2 =
𝑢𝑖,𝑗 + 𝑢𝑖,𝑗+1

2
[[𝑢]]𝑖,𝑗+1/2 := 𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗 .

We let 𝑢𝑖,𝑗(𝑡) be an approximation of the average value of 𝑢 over the rectangles 𝒞𝑖,𝑗 , that is,

𝑢𝑖,𝑗(𝑡) ≈
1

∆𝑥∆𝑦

∫︁
𝒞𝑖,𝑗

𝑢(𝑥, 𝑦, 𝑡) d(𝑥, 𝑦).

The initial data is sampled as 𝑢𝑖,𝑗(0) = 1
Δ𝑥Δ𝑦

∫︀
𝒞𝑖,𝑗

𝑢0(𝑥, 𝑦) d(𝑥, 𝑦). A semi-discrete finite volume method for
(2.1) can then be written in the generic form

d
d𝑡
𝑢𝑖,𝑗(𝑡) +

𝐹 𝑥𝑖+1/2,𝑗 − 𝐹 𝑥𝑖−1/2,𝑗

∆𝑥
+
𝐹 𝑦𝑖,𝑗+1/2 − 𝐹 𝑦𝑖,𝑗−1/2

∆𝑦
= 0, (2.2)

where the numerical flux function 𝐹 𝑥𝑖+1/2,𝑗 = 𝐹 𝑥(𝑢𝑖,𝑗 , 𝑢𝑖+1,𝑗) is computed from an approximate solution of the
Riemann problem at the interface {(𝑥𝑖+1/2, 𝑦)}𝑦𝑗−1/26𝑦6𝑦𝑗+1/2

and 𝐹 𝑦𝑖,𝑗+1/2 is computed analogously [9,12]. As for
the flux function 𝑓 , we will denote 𝐹 = (𝐹 𝑥, 𝐹 𝑦). The computed solution generated by the scheme is given by
𝑢Δ(𝑥, 𝑦, 𝑡) =

∑︀
𝑖,𝑗 𝑢𝑖,𝑗(𝑡)𝜒𝒞𝑖,𝑗 (𝑥, 𝑦), where Δ = (∆𝑥,∆𝑦) and 𝜒𝒞 is the characteristic function for the rectangle

𝒞. We say that the numerical flux function 𝐹 is consistent with 𝑓 if 𝐹 𝑥(𝑢, 𝑢) = 𝑓𝑥(𝑢) and 𝐹 𝑦(𝑢, 𝑢) = 𝑓𝑦(𝑢) for
all 𝑢 ∈ R. We also say that a numerical flux 𝐹 is locally Lipschitz continuous if 𝐹 𝑥, 𝐹 𝑦 are locally Lipschitz
continuous in each argument.

2.2. Entropy stable numerical methods

In order for any limit 𝑢 = limΔ→0 𝑢
Δ to satisfy the entropy condition (1.5), the numerical method (2.2)

must satisfy some discrete form of the entropy condition. In this section we briefly review the theory of so-called
entropy conservative and entropy stable schemes, and we define the TECNO schemes, which will be the subject
of the rest of the paper.

Definition 2.1 (Entropy conservative methods). Let (𝜂, 𝑞) be an entropy pair. We say that the finite volume
method (2.2) is entropy conservative (with respect to (𝜂, 𝑞)) if computed solutions satisfy the discrete entropy
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equality
d
d𝑡
𝜂(𝑢𝑖,𝑗) +

𝑄𝑥𝑖+1/2,𝑗 −𝑄𝑥𝑖−1/2,𝑗

∆𝑥
+
𝑄𝑦𝑖,𝑗+1/2 −𝑄𝑦𝑖,𝑗−1/2

∆𝑦
= 0, (2.3)

where 𝑄𝑥𝑖+1/2,𝑗 = 𝑄𝑥(𝑢𝑖,𝑗 , 𝑢𝑖+1,𝑗) and 𝑄𝑦𝑖,𝑗+1/2 = 𝑄𝑦(𝑢𝑖,𝑗 , 𝑢𝑖,𝑗+1) are numerical entropy flux functions satisfying
𝑄𝑥(𝑢, 𝑢) = 𝑞𝑥(𝑢) and 𝑄𝑦(𝑢, 𝑢) = 𝑞𝑦(𝑢) for all 𝑢 ∈ R.

Definition 2.2 (Entropy stable methods). Let (𝜂, 𝑞) be an entropy pair. We say that the finite volume method
(2.2) is entropy stable (with respect to (𝜂, 𝑞)) if computed solutions satisfy the discrete entropy equality

d
d𝑡
𝜂(𝑢𝑖,𝑗) +

𝑄𝑥𝑖+1/2,𝑗 −𝑄𝑥𝑖−1/2,𝑗

∆𝑥
+
𝑄𝑦𝑖,𝑗+1/2 −𝑄𝑦𝑖,𝑗−1/2

∆𝑦
6 0, (2.4)

where 𝑄𝑥𝑖+1/2,𝑗 = 𝑄𝑥(𝑢𝑖,𝑗 , 𝑢𝑖+1,𝑗) and 𝑄𝑦𝑖,𝑗+1/2 = 𝑄𝑦(𝑢𝑖,𝑗 , 𝑢𝑖,𝑗+1) are numerical entropy flux functions satisfying
𝑄𝑥(𝑢, 𝑢) = 𝑞𝑥(𝑢) and 𝑄𝑦(𝑢, 𝑢) = 𝑞𝑦(𝑢) for all 𝑢 ∈ R.

For an entropy pair (𝜂, 𝑞) the mapping 𝑢 ↦→ 𝜂′(𝑢) is of particular importance, and we denote this entropy
variable by 𝑣 = 𝑣(𝑢) := 𝜂′(𝑢). If 𝜂 is strictly convex, 𝜂′′(𝑢) > 0, then the map 𝑢 ↦→ 𝑣(𝑢) is strictly monotone
increasing and hence is invertible. This inverse will be denoted by 𝑢(𝑣). Thus, the mapping 𝑢 ↦→ 𝑣 induces a
change of variables, in terms of which we can pose the conservation law (2.2) as

𝜕𝑡𝑢(𝑣) +∇ · 𝑓(𝑢(𝑣)) = 0. (2.5)

We define also the entropy potential 𝜓 : R → R𝑑 defined by 𝜓(𝑢) := 𝑣(𝑢)𝑓(𝑢) − 𝑞(𝑢), whose name is given by
the fact that 𝜕𝑣𝜓(𝑢(𝑣)) = 𝑓(𝑢(𝑣)).

A general approach to designing entropy conservative/stable schemes is as follows. Multiplying both sides of
(2.2) by 𝑣𝑖,𝑗 := 𝜂′(𝑢𝑖,𝑗) and using the chain rule we get

d
d𝑡
𝜂(𝑢𝑖,𝑗) + 𝑣𝑖,𝑗

𝐹 𝑥𝑖+1/2,𝑗 − 𝐹 𝑥𝑖−1/2,𝑗

∆𝑥
+ 𝑣𝑖,𝑗

𝐹 𝑦𝑖,𝑗+1/2 − 𝐹 𝑦𝑖,𝑗−1/2

∆𝑦
= 0.

Adding and subtracting terms yields

d
d𝑡
𝜂(𝑢𝑖,𝑗) +

𝑄𝑥𝑖+1/2,𝑗 −𝑄𝑥𝑖−1/2,𝑗

∆𝑥
+
𝑄𝑦𝑖,𝑗+1/2 −𝑄𝑦𝑖,𝑗−1/2

∆𝑦

=
𝑟𝑥𝑖+1/2,𝑗 + 𝑟𝑥𝑖−1/2,𝑗

2∆𝑥
+
𝑟𝑦𝑖,𝑗+1/2 + 𝑟𝑦𝑖,𝑗−1/2

2∆𝑦

(2.6)

where

𝑟𝑥𝑖+1/2,𝑗 = [[𝑣]]𝑖+1/2,𝑗𝐹
𝑥
𝑖+1/2,𝑗 − [[𝜓𝑥]]𝑖+1/2,𝑗 ,

𝑟𝑦𝑖,𝑗+1/2 = [[𝑣]]𝑖,𝑗+1/2𝐹
𝑦
𝑖,𝑗+1/2 − [[𝜓𝑦]]𝑖,𝑗+1/2

𝑄𝑥𝑖+1/2,𝑗 = {{𝑣}}𝑖+1/2,𝑗𝐹
𝑥
𝑖+1/2,𝑗 − {{𝜓

𝑥}}𝑖+1/2,𝑗 ,

𝑄𝑦𝑖,𝑗+1/2 = {{𝑣}}𝑖,𝑗+1/2𝐹
𝑦
𝑖,𝑗+1/2 − {{𝜓

𝑦}}𝑖,𝑗+1/2.

(2.7)

It is straightforward to see that 𝑄𝑥, 𝑄𝑦 are consistent with 𝑞 in the sense of Definitions 2.1 and 2.2, as long as
𝐹 𝑥, 𝐹 𝑦 are consistent with 𝑓 . Thus, if 𝐹 𝑥, 𝐹 𝑦 are chosen such that either 𝑟 ≡ 0 or 𝑟 6 0, then the scheme (2.2)
is entropy conservative/stable. In particular, if 𝐹 𝑥, 𝐹 𝑦 are of the form

𝐹 𝑥𝑖+1/2,𝑗 = 𝐹 𝑥𝑖+1/2,𝑗 −𝐷𝑥
𝑖+1/2,𝑗 [[𝑣]]𝑖+1/2,𝑗 , 𝐹 𝑦𝑖,𝑗+1/2 = 𝐹 𝑦𝑖,𝑗+1/2 −𝐷𝑦

𝑖,𝑗+1/2[[𝑣]]𝑖,𝑗+1/2 (2.8)
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for nonnegative coefficients 𝐷𝑥, 𝐷𝑦 > 0 and numerical fluxes 𝐹 𝑥, 𝐹 𝑦 satisfying

[[𝑣]]𝑖+1/2,𝑗𝐹
𝑥
𝑖+1/2,𝑗 = [[𝜓𝑥]]𝑖+1/2,𝑗 , [[𝑣]]𝑖,𝑗+1/2𝐹

𝑦
𝑖,𝑗+1/2 = [[𝜓𝑦]]𝑖,𝑗+1/2 (2.9)

then the resulting scheme (2.2) is entropy stable. These observations were first made by Tadmor [19, 20]; see
also [21]. For fluxes of the form (2.8) we also get a precise expression for the amount of entropy dissipated in
(2.4):

d
d𝑡
𝜂(𝑢𝑖,𝑗) +

𝑄𝑥𝑖+1/2,𝑗 −𝑄𝑥𝑖−1/2,𝑗

∆𝑥
+
𝑄𝑦𝑖,𝑗+1/2 −𝑄𝑦𝑖,𝑗−1/2

∆𝑦

=
𝐷𝑥
𝑖+1/2,𝑗 [[𝑣]]2𝑖+1/2,𝑗 +𝐷𝑥

𝑖−1/2,𝑗 [[𝑣]]2𝑖−1/2,𝑗

2∆𝑥
+
𝐷𝑦
𝑖,𝑗+1/2[[𝑣]]2𝑖,𝑗+1/2 +𝐷𝑦

𝑖,𝑗−1/2[[𝑣]]2𝑖,𝑗−1/2

2∆𝑦
·

Under further assumptions on 𝜂 and 𝐷, this yields explicit bounds on “weak TV” terms of the form∑︀
𝑖,𝑗 [[𝑣]]2𝑖+1/2,𝑗∆𝑦, which can be used to prove compactness and convergence of the numerical method; see e.g. [4].

We will apply this approach in Section 3.

Remark 2.3. The above observations can be used to design entropy stable schemes, by first finding numerical
fluxes 𝐹 𝑥, 𝐹 𝑦 satisfying (2.9), and then adding diffusion in the form (2.8). We note that with this approach,
we are only guaranteed that the discrete entropy inequality (2.4) (or (2.3) for entropy conservative schemes) is
satisfied for one particular entropy pair (𝜂, 𝑞).

2.3. The TECNO scheme

The scheme (2.2) with fluxes 𝐹 𝑥, 𝐹 𝑦 satisfying (2.9) is entropy conservative, in the sense of Definition 2.1.
It can be shown that two-point entropy conservative schemes are at most second-order accurate, in the sense
of truncation error [19, 20]. When adding diffusion in the form (2.8) with 𝐷 = 𝑂(1), the resulting scheme is
at most first-order accurate. The TECNO schemes, introduced in [4, 7], represent a systematic approach to
designing higher-order accurate entropy stable schemes. Since the convergence proof in Section 3 only applies
to the second-order TECNO schemes, we will only describe these methods here, and we refer to [4, 7] for the
general construction.

The TECNO scheme has two main ingredients: An entropy conservative flux 𝐹 𝑥, 𝐹 𝑦, and a sign preserving
reconstruction method. Since our mesh is a Cartesian grid, we define the reconstruction procedure in a tensorial
manner. For a partition (𝒞𝑖)𝑖∈Z of R we consider a 𝑝th order reconstruction operator ℛ, mapping any grid
function (𝑤𝑖)𝑖∈Z to a piecewise (𝑝− 1)th order polynomial ℛ𝑤(𝑥). Multi-dimensional grid functions (𝑤𝑖,𝑗)𝑖,𝑗∈Z
are reconstructed dimension-by-dimension, defining in particular the edge values

𝑤±𝑖+1/2,𝑗 = ℛ𝑤·,𝑗(𝑥𝑖+1/2 ± 0), 𝑤±𝑖,𝑗+1/2 = ℛ𝑤𝑖,·(𝑦𝑗+1/2 ± 0) (2.10a)

(where we by “+0” and “−0” mean right and left limits, respectively). We define also the edge jumps

⟨⟨𝑤⟩⟩𝑖+1/2,𝑗 = 𝑤+
𝑖+1/2,𝑗 − 𝑤−𝑖+1/2,𝑗 , ⟨⟨𝑤⟩⟩𝑖,𝑗+1/2 = 𝑤+

𝑖,𝑗+1/2 − 𝑤−𝑖,𝑗+1/2. (2.10b)

Fix now some entropy pair (𝜂, 𝑞). The second-order TECNO scheme [4, 7] is constructed from a flux 𝐹 𝑥, 𝐹 𝑦

which is entropy conservative with respect to (𝜂, 𝑞), and applies a second-order reconstruction method to the
entropy variables 𝑣 = 𝜂 ∘ 𝑢. The resulting scheme (2.2) has numerical flux

𝐹 𝑥𝑖+1/2,𝑗 = 𝐹𝑖+1/2,𝑗 −𝐷𝑥
𝑖+1/2,𝑗⟨⟨𝑣⟩⟩𝑖+1/2,𝑗 ,

𝐹 𝑦𝑖,𝑗+1/2 = 𝐹𝑖,𝑗+1/2 −𝐷𝑦
𝑖,𝑗+1/2⟨⟨𝑣⟩⟩𝑖,𝑗+1/2,

(2.11)
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where 𝐷𝑥, 𝐷𝑦 > 0. As shown in [7], the above scheme is formally second-order accurate, and it satisfies the
discrete entropy inequality (2.4) for the entropy pair (𝜂, 𝑞), provided the reconstruction operator ℛ satisfies the
sign property

[[𝑣]]𝑖+1/2,𝑗⟨⟨𝑣⟩⟩𝑖+1/2,𝑗 > 0, [[𝑣]]𝑖,𝑗+1/2⟨⟨𝑣⟩⟩𝑖,𝑗+1/2 > 0.

This is indeed true for the ENO reconstruction method [11]:

Theorem 2.4 (The ENO sign property [8]). For some 𝑝 ∈ N, let ℛ denote the 𝑝th order ENO reconstruction
operator. Then for any grid function (𝑤𝑖)𝑖∈Z,

sign⟨⟨𝑤⟩⟩𝑖+1/2 = sign[[𝑤]]𝑖+1/2. (2.12)

Moreover, there exists a constant 𝐶𝑝 > 0 depending only on 𝑝 such that

⟨⟨𝑤⟩⟩𝑖+1/2

[[𝑤]]𝑖+1/2
6 𝐶𝑝. (2.13)

For the sake of simplicity we henceforth select the entropy for which TECNO is entropy stable as 𝜂(𝑢) = 𝑢2/2.
The corresponding entropy variable is then simply 𝑣 = 𝑢, making the mapping between conserved and entropy
variables somewhat easier. A summary of the TECNO scheme that we will analyze in this paper follows:

Definition 2.5. The second-order TECNO scheme for (2.1) is the numerical scheme (2.2) with the numerical
flux

𝐹 𝑥𝑖+1/2,𝑗 = 𝐹𝑖+1/2,𝑗 −𝐷𝑥
𝑖+1/2,𝑗⟨⟨𝑢⟩⟩𝑖+1/2,𝑗 ,

𝐹 𝑦𝑖,𝑗+1/2 = 𝐹𝑖,𝑗+1/2 −𝐷𝑦
𝑖,𝑗+1/2⟨⟨𝑢⟩⟩𝑖,𝑗+1/2,

(2.14)

where

– 𝐹 is a consistent and locally Lipschitz continuous numerical flux which is entropy conservative with respect
to the entropy 𝜂(𝑢) = 𝑢2/2

– the diffusion coefficients 𝐷 satisfy

𝐷 6 𝐷𝑥
𝑖+1/2,𝑗 , 𝐷

𝑦
𝑖,𝑗+1/2 6 𝐷 for fixed 𝐷,𝐷 > 0

– ⟨⟨𝑢⟩⟩𝑖+1/2,𝑗 and ⟨⟨𝑢⟩⟩𝑖,𝑗+1/2 denote the jumps in the second-order ENO reconstruction of the conserved variable
(𝑢𝑖,𝑗(𝑡))𝑖,𝑗∈Z.

Before stating the next theorem, it should be mentioned once and for all that here and in the later sections, 𝐶
has been used as a generic constant which is independent of ∆𝑥 and ∆𝑦, but might vary in different calculations.

Theorem 2.6. The second-order TECNO scheme (cf. Def. 2.5) has the following properties:

(i) it is entropy stable with respect to the square entropy 𝜂(𝑢) = 𝑢2/2
(ii) the flux 𝐹 is locally Lipschitz continuous
(iii) there is some 𝐶 > 0 independent of ∆𝑥,∆𝑦 such that∫︁ 𝑇

0

∑︁
𝑖,𝑗

(︁⃒⃒
[[𝑢]]𝑖+1/2,𝑗

⃒⃒3∆𝑦 +
⃒⃒
[[𝑢]]𝑖,𝑗+1/2

⃒⃒3∆𝑥
)︁

d𝑡 6 𝐶‖𝑢‖𝐿∞(R2×[0,𝑇 ]), (2.15a)

∫︁ 𝑇

0

∑︁
𝑖,𝑗

(︁
[[𝑢]]𝑖+1/2,𝑗⟨⟨𝑢⟩⟩𝑖+1/2,𝑗∆𝑦 + [[𝑢]]𝑖,𝑗+1/2⟨⟨𝑢⟩⟩𝑖,𝑗+1/2∆𝑥

)︁
d𝑡 6 𝐶. (2.15b)

where 𝑢 = (𝑢𝑖,𝑗(𝑡))𝑖,𝑗 is the solution computed by the scheme.
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Proof. The entropy stability follows from the calculations in Section 2.2 and the sign property (2.12). Local
Lipschitz continuity of 𝐹 follows from the Lipschitz continuity of 𝐹 and the upper bound (2.13).

For the “weak TV bounds” (2.15), summing (2.6) over 𝑖, 𝑗 ∈ Z, integrating over 𝑡 ∈ [0, 𝑇 ] and using the
specific form of 𝐹 in (2.14) yields

1
2

∑︁
𝑖,𝑗

(𝑢𝑖,𝑗(𝑇 ))2 ∆𝑥∆𝑦 − 1
2

∑︁
𝑖,𝑗

(𝑢𝑖,𝑗(0))2 ∆𝑥∆𝑦 = −ℰ ,

ℰ :=
∫︁ 𝑇

0

∑︁
𝑖,𝑗

(︁
𝐷𝑥
𝑖+1/2,𝑗 [[𝑢]]𝑖+1/2,𝑗⟨⟨𝑢⟩⟩𝑖+1/2,𝑗∆𝑦 +𝐷𝑦

𝑖,𝑗+1/2[[𝑢]]𝑖,𝑗+1/2⟨⟨𝑢⟩⟩𝑖,𝑗+1/2∆𝑥
)︁

d𝑡.

Since 𝐷 > 0 and the reconstruction satisfies the sign property (2.12), we have ℰ > 0. From the above we
also see that ℰ 6 1

2

∑︀
𝑖,𝑗(𝑢𝑖,𝑗(0))2 ∆𝑥∆𝑦 6 1

2‖𝑢0‖2𝐿2(R2), so we see that the left-hand side of (2.15b) can be
upper-bounded by 𝐷ℰ 6 1

2𝐷‖𝑢0‖2𝐿2(R2) <∞.
For the remaining property (2.15a) we use the following fact, proved in Section 4.4 of [5]: For every grid

function (𝑤𝑖)𝑖∈Z with compact support,∑︁
𝑖∈Z

⃒⃒
[[𝑤]]𝑖+1/2

⃒⃒3
6 2‖𝑤‖𝑙∞

∑︁
𝑖∈Z
⟨⟨𝑤⟩⟩𝑖+1/2[[𝑤]]𝑖+1/2 (2.16)

where ⟨⟨𝑤⟩⟩𝑖+1/2 = 𝑤+
𝑖+1/2 − 𝑤−𝑖+1/2 denotes the jump in the second-order ENO reconstruction of 𝑤. Thus, the

left-hand side of (2.15a) can be bounded by ‖𝑢‖𝐿∞ times the left-hand side of (2.15b). �

Remark 2.7. For even higher-order TECNO schemes, the results in Theorem 2.6 are still valid, with the
exception of (2.15a): The crucial estimate (2.16) has been conjectured but remains unproven; cf. Section 4.4 of
[5] or Section 5.5 of [4].

3. Convergence of the scheme

Given a numerical solution (𝑢𝑖,𝑗(𝑡))𝑖,𝑗∈Z,𝑡∈R+ computed with the second-order TECNO scheme (cf. Def. 2.5)
we define the piecewise constant function

𝑢Δ(𝑥, 𝑦, 𝑡) := 𝑢𝑖,𝑗(𝑡) for (𝑥, 𝑦) ∈ 𝒞𝑖,𝑗 ,

where Δ = (∆𝑥,∆𝑦). The goal of this section will be to show the following theorem:

Theorem 3.1. Assume that the solution 𝑢Δ computed by the TECNO scheme (cf. Def. 2.5) is uniformly 𝐿∞

bounded,
‖𝑢Δ‖𝐿∞(R2×[0,𝑇 ]) 6𝑀 for every Δ = (∆𝑥,∆𝑦) > 0 (3.1)

for some 𝑀 > 0. Then there is some subsequence Δ′ → 0 such that 𝑢Δ′ → 𝑢 pointwise a.e. and in 𝐿𝑝(R2×[0, 𝑇 ])
for every 𝑝 ∈ [1,∞). The function 𝑢 is a weak solution of (2.1) which satisfies the entropy condition (1.5) for
the entropy 𝜂(𝑢) = 𝑢2.

We will use the method of compensated compactness, and we give the main results required here in Section 3.1.
The convergence proof is given in Section 3.2, but we summarize it here:

Proof of Theorem 3.1. The compactness result, Corollary 3.4 requires the entropy residuals {𝜕𝑡𝜂(𝑢Δ) + ∇ ·
𝑞(𝑢Δ)}Δ>0 to lie in a compact subset of 𝐻−1

loc . Lemma 3.5 bounds their discrete equivalents 𝜕𝑡𝜂(𝑢Δ)+∇·𝑄(𝑢Δ)
by terms which, by Theorem 2.6(iii) and (3.1), are bounded in the sense of measures. Lemma 3.6 shows that
the remainder ∇ · (𝑞−𝑄) is small in 𝐻−1

loc . We then conclude (using Murat’s lemma) that the entropy residuals
are precompact, and hence there is some strongly convergent subsequence.

Lemma 3.7 is a standard “Lax–Wendroff” proof, showing that the limit is a weak solution, and Lemma 3.8
shows consistency with a single entropy condition. �



1422 N. CHATTERJEE AND U.S. FJORDHOLM

3.1. Compensated compactness

We briefly summarize the technical compactness lemmas here, and refer to [1, 22] for more details.

Lemma 3.2 (Murat’s lemma). Let Ω ⊂ R𝑑, 𝑑 > 2 be an open, bounded set. Let (𝜇)𝑛∈N be a bounded sequence
in 𝑊−1,𝑝(Ω) for some 2 < 𝑝 6∞. Suppose also that ∀ 𝑛 ∈ N

𝜇𝑛 = 𝜉𝑛 + 𝜋𝑛, (3.2)

where 𝜉𝑛 lies in a compact set of 𝐻−1
loc (Ω) and 𝜋𝑛 lies in a bounded set of ℳloc(Ω). Then (𝜇𝑛)𝑛∈N lies in a

compact subset of 𝐻−1
loc (Ω).

Theorem 3.3 (Panov [18], Thm. 5). Let (𝑢𝜀)𝜀>0 be a bounded sequence in 𝐿∞(R𝑑 × R+) such that for every
𝑘 ∈ R, the set {︀

𝜕𝑡𝜂𝑘(𝑢𝜀) +∇ · 𝑞𝑘(𝑢𝜀)
}︀
𝜀>0

(3.3)

is precompact in 𝐻−1
loc (R𝑑 × R+). (Here, (𝜂𝑘, 𝑞𝑘) denote the Kruzkov entropy pairs (1.3).) Then there is a

subsequence 𝜀𝑛 → 0 as 𝑛→∞ and a function 𝑢 ∈ 𝐿∞(R𝑑 × R+) such that

𝑢𝜀𝑛 → 𝑢 a.e. and in 𝐿𝑝loc(R𝑑 × R+) for every 1 6 𝑝 <∞. (3.4)

The following corollary shows that it is enough to consider smooth entropies in the above result.

Corollary 3.4. Let (𝑢𝜀)𝜀>0 be a bounded sequence in 𝐿∞(R𝑑×R+) such that for every entropy pair (𝜂, 𝑞) with
𝜂 ∈ 𝐶2

𝑏 (R), the set {︀
𝜕𝑡𝜂(𝑢𝜀) +∇ · 𝑞(𝑢𝜀)

}︀
𝜀>0

(3.5)

is precompact in 𝐻−1
loc (R𝑑×R+). Then there is a subsequence 𝜀𝑛 → 0 as 𝑛→∞ and a function 𝑢 ∈ 𝐿∞(R𝑑×R+)

such that
𝑢𝜀𝑛

→ 𝑢 a.e. and in 𝐿𝑝loc(R𝑑 × R+) for every 1 6 𝑝 <∞. (3.6)

Proof. Since this result is rather standard we omit a full proof, but the idea is to approximate 𝜂𝑘 by 𝐶2 convex
entropies which converge uniformly to 𝜂𝑘. �

�

3.2. Convergence of TECNO

The TECNO scheme (Def. 2.5) is guaranteed to dissipate the square entropy 𝜂(𝑢) = 𝑢2/2, but for an arbitrary
entropy 𝜂 the corresponding discrete entropy residual (2.6) might have either sign. We can nonetheless show
that the entropy residual is not too large, in the following sense:

Lemma 3.5. Assume that the solution computed by the TECNO scheme is 𝐿∞ bounded, (3.1). Then for any
entropy pair (𝜂, 𝑞) with 𝜂 ∈ 𝐶2, the total discrete entropy production is upper-bounded by⃒⃒

𝜕𝑡𝜂(𝑢Δ) +∇ ·𝑄
⃒⃒(︀

R2 × [0, 𝑇 ]
)︀
6 𝐶

∫︁ 𝑇

0

∑︁
𝑖,𝑗

(︁
|[[𝑢]]𝑖+1/2,𝑗 |3∆𝑦 + |[[𝑢]]𝑖,𝑗+1/2|3∆𝑥

)︁
d𝑡

+ 𝐶

∫︁ 𝑇

0

∑︁
𝑖,𝑗

(︁
[[𝑢]]𝑖+1/2,𝑗⟨⟨𝑢⟩⟩𝑖+1/2,𝑗∆𝑦 + [[𝑢]]𝑖,𝑗+1/2⟨⟨𝑢⟩⟩𝑖,𝑗+1/2∆𝑥

)︁
d𝑡 (3.7)

where ∇ ·𝑄 denotes the measure whose integral of any 𝜙 ∈ 𝐶0
𝑐 (R2 × R+) is

⟨︀
∇ ·𝑄, 𝜙

⟩︀
=
∑︁
𝑖,𝑗∈Z

∫︁
R+

𝜙𝑖+1/2,𝑗

𝑄𝑥𝑖+1/2,𝑗 −𝑄𝑥𝑖−1/2,𝑗

∆𝑥
+ 𝜙𝑖,𝑗+1/2

𝑄𝑦𝑖,𝑗+1/2 −𝑄𝑦𝑖,𝑗−1/2

∆𝑦
d𝑡∆𝑥∆𝑦,

𝜙𝑖+1/2,𝑗 :=
1

∆𝑦

∫︁ 𝑦𝑗+1/2

𝑦𝑗−1/2

𝜙(𝑥𝑖+1/2, 𝑦, 𝑡) d𝑦, 𝜙𝑖,𝑗+1/2 :=
1

∆𝑥

∫︁ 𝑥𝑖+1/2

𝑥𝑖−1/2

𝜙(𝑥, 𝑦𝑗+1/2, 𝑡) d𝑥

(3.8)
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and where 𝑄𝑥, 𝑄𝑦 are given by (2.7).

Proof. The technique of the proof is to compare the entropy residual of an arbitrary entropy 𝜂 to the entropy
residual of the square entropy. Let (𝜂, 𝑞) be any entropy pair with corresponding entropy residual 𝜓 = (𝜓𝑥, 𝜓𝑦),
and let 𝜓 be the entropy potential with respect to the square entropy 𝜂 = 𝑢2/2, 𝜓(𝑢) = 𝑢𝑓(𝑢)− 𝑞(𝑢). We split
the entropy residual 𝑟 in (2.7) as 𝑟 = 𝑟1 + 𝑟2, where

𝑟1𝑖+1/2,𝑗 = [[𝑣]]𝑖+1/2,𝑗𝐹
𝑥
𝑖+1/2,𝑗 − [[𝜓𝑥]]𝑖+1/2,𝑗 , 𝑟2𝑖+1/2,𝑗 = −[[𝑣]]𝑖+1/2,𝑗𝐷

𝑥
𝑖+1/2⟨⟨𝑢⟩⟩𝑖+1/2,𝑗

and similarly for 𝑟𝑦𝑖,𝑗+1/2. If [[𝑢]]𝑖+1/2,𝑗 = 0 then 𝑟𝑖+1/2,𝑗 = 0, so assume [[𝑢]]𝑖+1/2,𝑗 ̸= 0. The first part of the entropy
residual can be estimated as

|𝑟1𝑖+1/2,𝑗 | 6
⃒⃒⃒
[[𝑣]]𝑖+1/2,𝑗𝐹

𝑥
𝑖+1/2,𝑗 − [[𝜓𝑥]]𝑖+1/2,𝑗

⃒⃒⃒
=
⃒⃒⃒⃒
[[𝑣]]𝑖+1/2,𝑗

(︂
[[𝜓𝑥]]𝑖+1/2,𝑗

[[𝑢]]𝑖+1/2,𝑗
−

[[𝜓𝑥]]𝑖+1/2,𝑗

[[𝑣]]𝑖+1/2,𝑗

)︂⃒⃒⃒⃒
=
⃒⃒
[[𝑣]]𝑖+1/2,𝑗

⃒⃒⃒⃒⃒⃒ 1
[[𝑢]]𝑖+1/2,𝑗

∫︁ 𝑢𝑖+1,𝑗

𝑢𝑖,𝑗

(𝜓𝑥)′(𝑣) d𝑣 − 1
[[𝑣]]𝑖+1/2,𝑗

∫︁ 𝑣𝑖+1,𝑗

𝑣𝑖,𝑗

(𝜓𝑥)′(𝑣) d𝑣
⃒⃒⃒⃒

=
⃒⃒
[[𝑣]]𝑖+1/2,𝑗

⃒⃒⃒⃒⃒⃒ 1
[[𝑢]]𝑖+1/2,𝑗

∫︁ 𝑢𝑖+1,𝑗

𝑢𝑖,𝑗

𝑓𝑥(𝑢) d𝑢− 1
[[𝑣]]𝑖+1/2,𝑗

∫︁ 𝑣𝑖+1,𝑗

𝑣𝑖,𝑗

𝑓𝑥(𝑢(𝑣)) d𝑣
⃒⃒⃒⃒

(by the mean value theorem)

=
⃒⃒
[[𝑣]]𝑖+1/2,𝑗

⃒⃒⃒⃒⃒⃒𝑓𝑥(𝑢𝑖,𝑗) + 𝑓𝑥(𝑢𝑖+1,𝑗)
2

−
[[𝑢]]2𝑖+1/2,𝑗

12
(𝜓𝑥)′′′(𝜉𝑖+1/2,𝑗)

− 𝑓𝑥(𝑢𝑖,𝑗) + 𝑓𝑥(𝑢𝑖+1,𝑗)
2

+
[[𝑣]]2𝑖+1/2,𝑗

12
(𝜓𝑥)′′′(𝜉𝑖+1/2,𝑗)

⃒⃒⃒⃒
(by the 𝐿∞ bound on 𝑢)

6 𝐶
⃒⃒
[[𝑢]]𝑖+1/2,𝑗

⃒⃒3
,

and similarly in the 𝑦-direction,
|𝑟1𝑖,𝑗+1/2| 6 𝐶

⃒⃒
[[𝑢]]𝑖,𝑗+1/2

⃒⃒3
.

The second part of the entropy residual can be bounded by

|𝑟2𝑖+1/2,𝑗 | 6 ‖𝜂
′′‖𝐿∞([−𝑀,𝑀 ])𝐷[[𝑢]]𝑖+1/2⟨⟨𝑢⟩⟩𝑖+1/2.

The conclusion now follows. �

We can now show precompactness of the sequence of approximations:

Lemma 3.6. Let Ω ⊂ R2 × [0, 𝑇 ] be a bounded subset and assume that the solution computed by the TECNO
scheme is 𝐿∞ bounded, (3.1). Then there is a subsequence Δ′ → 0 such that 𝑢Δ′ → 𝑢 pointwise a.e. and in
𝐿𝑝loc(R2 × R+) for 1 6 𝑝 <∞, for some 𝑢 ∈ 𝐿1 ∩ 𝐿∞(R2 × R+).

Proof. Let (𝜂, 𝑞) be an arbitrary 𝐶2 entropy pair. By Corollary 3.4 it is sufficient to show that the sequence
ℰΔ𝑥,Δ𝑦 := 𝜕𝑡𝜂(𝑢Δ) +∇ · 𝑞(𝑢Δ) is precompact in 𝐻−1

loc , and to this end we will employ Murat’s lemma. Firstly
note that ℰΔ𝑥,Δ𝑦 is bounded in 𝑊−1,∞(R2 × R+), by the 𝐿∞ bound on 𝑢Δ. Decompose

𝜕𝑡𝜂(𝑢) +∇ · 𝑞(𝑢) = 𝜕𝑡𝜂(𝑢) +∇ ·𝑄⏟  ⏞  
=: ℰ1

+∇ · 𝑞(𝑢)−∇ ·𝑄⏟  ⏞  
=: ℰ2
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where 𝑄 is given in (2.7). Note that, due to the 𝐿∞ bound on 𝑢Δ and Theorem 2.6, also 𝑄 is locally Lipschitz
continuous. By Lemma 3.5 and Theorem 2.6(iii), the discrete entropy production ℰ1 is bounded in the space of
measures ℳ(R𝑑 × R+).

Now to show that ℰ2 is precompact in 𝐻−1
loc (R2 × [0, 𝑇 ]), let Ω ⊂ R2 × [0, 𝑇 ] be open and bounded and let

𝜙 ∈ 𝐻1
0 (Ω). Extending 𝜙 by zero outside Ω, we get

ℰ2(𝜙) =
∫︁

Ω

𝜙𝑑
(︀
∇ · 𝑞(𝑢)−∇ ·𝑄

)︀
𝑑(𝑥, 𝑦, 𝑡)

(cf. (3.8))

=
∫︁ 𝑇

0

∑︁
𝑖,𝑗

𝜙𝑖+1/2,𝑗

(︀
𝑞𝑥(𝑢𝑖+1,𝑗)− 𝑞𝑥(𝑢𝑖,𝑗)

)︀
∆𝑦 + 𝜙𝑖,𝑗+1/2

(︀
𝑞𝑦(𝑢𝑖,𝑗+1)− 𝑞𝑦(𝑢𝑖,𝑗)

)︀
∆𝑥d𝑡

−
∫︁ 𝑇

0

∑︁
𝑖,𝑗∈Z

𝜙𝑖+1/2,𝑗

𝑄𝑥𝑖+1/2,𝑗 −𝑄𝑥𝑖−1/2,𝑗

∆𝑥
+ 𝜙𝑖,𝑗+1/2

𝑄𝑦𝑖,𝑗+1/2 −𝑄𝑦𝑖,𝑗−1/2

∆𝑦
d𝑡∆𝑥∆𝑦

(summation by parts)

=
∫︁ 𝑇

0

∑︁
𝑖,𝑗

𝜙𝑖+1/2,𝑗 − 𝜙𝑖−1/2,𝑗

∆𝑥
(︀
𝑄𝑥𝑖−1/2,𝑗 − 𝑞𝑥(𝑢𝑖,𝑗)

)︀
d𝑡∆𝑥∆𝑦

+
∫︁ 𝑇

0

∑︁
𝑖,𝑗

𝜙𝑖,𝑗+1/2 − 𝜙𝑖,𝑗−1/2

∆𝑦
(︀
𝑄𝑦𝑖,𝑗−1/2 − 𝑞𝑦(𝑢𝑖,𝑗)

)︀
d𝑡∆𝑥∆𝑦

(letting ℐ = {(𝑖, 𝑗) : Ω ∩ 𝒞𝑖,𝑗 ̸= ∅})

6 ‖𝜕𝑥𝜙‖𝐿2(Ω)

(︃∫︁ 𝑇

0

∑︁
(𝑖,𝑗)∈ℐ

⃒⃒
𝑄𝑥𝑖−1/2,𝑗 − 𝑞𝑥(𝑢𝑖,𝑗)

⃒⃒2∆𝑥∆𝑦 d𝑡

)︃ 1
2

+ ‖𝜕𝑦𝜙‖𝐿2(Ω)

(︃∫︁ 𝑇

0

∑︁
(𝑖,𝑗)∈ℐ

⃒⃒
𝑄𝑦𝑖,𝑗−1/2 − 𝑞𝑦(𝑢𝑖,𝑗)|2∆𝑥∆𝑦 d𝑡

)︃ 1
2

(by Lipschitz continuity of 𝑄)

6 𝐶‖𝜙‖𝐻1(Ω)

[︃(︃∫︁ 𝑇

0

∑︁
(𝑖,𝑗)∈ℐ

|[[𝑢]]𝑖+1/2,𝑗 |2∆𝑥∆𝑦 d𝑡

)︃ 1
2

+

(︃∫︁ 𝑇

0

∑︁
(𝑖,𝑗)∈ℐ

|[[𝑢]]𝑖,𝑗+1/2|2∆𝑥∆𝑦 d𝑡

)︃ 1
2
]︃

6 𝐶‖𝜙‖𝐻1(Ω)|Ω|
3
2

[︃(︃∫︁ 𝑇

0

∑︁
𝑖,𝑗

|[[𝑢]]𝑖+1/2,𝑗 |3∆𝑥∆𝑦 d𝑡

)︃ 1
3

+

(︃∫︁ 𝑇

0

∑︁
𝑖,𝑗

|[[𝑢]]𝑖,𝑗+1/2|3∆𝑥∆𝑦 d𝑡

)︃ 1
3
]︃

→ 0

where the last step follows from (2.15). Thus by invoking Murat’s Lemma 3.2 we can conclude that the sequence
(ℰΔ𝑥,Δ𝑦)Δ𝑥,Δ𝑦>0 is precompact in 𝐻−1

loc (R2 × [0, 𝑇 ]). Applying Corollary 3.4 then yields the desired result. �

Now we need to show that this limit function 𝑢 is indeed a weak solution of (2.1). To do so we state and
prove the following “Lax–Wendroff result”.
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Lemma 3.7. Under the same assumptions as in Lemma 3.6, the limit 𝑢 is a weak solution of (2.1).

Proof. Let 𝜙 ∈ 𝐶1
𝑐 (R2 × (0, 𝑇 )) be a test function and select a compact set 𝐾𝑥 ×𝐾𝑦 ⊂ R2 such that supp𝜙 ⊂

𝐾𝑥 ×𝐾𝑦 × [0, 𝑇 ]. Furthermore, denote

𝜙𝑖,𝑗(𝑡) = 𝜙(𝑥𝑖, 𝑦𝑗 , 𝑡), 𝜙Δ(𝑥, 𝑦, 𝑡) =
∑︁
𝑖,𝑗

𝜙𝑖,𝑗(𝑡)𝜒𝒞𝑖,𝑗
(𝑥, 𝑦).

Multiplying the numerical scheme (2.2) by 𝜙𝑖,𝑗(𝑡) and integrating/summing in time/space, we get

0 =
∫︁ 𝑇

0

∆𝑥∆𝑦
∑︁
𝑖,𝑗

(︂
𝜙𝑖,𝑗

d
d𝑡
𝑢Δ
𝑖,𝑗 + 𝜙𝑖,𝑗

𝐹 𝑥𝑖+1/2,𝑗 − 𝐹 𝑥𝑖−1/2,𝑗

∆𝑥
+ 𝜙𝑖,𝑗

𝐹 𝑦𝑖,𝑗+1/2 − 𝐹 𝑦𝑖,𝑗−1/2

∆𝑦

− 𝜙𝑖,𝑗
𝐷𝑥
𝑖+1/2,𝑗⟨⟨𝑢⟩⟩𝑖+1/2,𝑗 −𝐷𝑥

𝑖−1/2,𝑗⟨⟨𝑢⟩⟩𝑖−1/2,𝑗

∆𝑥

− 𝜙𝑖,𝑗
𝐷𝑦
𝑖,𝑗+1/2⟨⟨𝑢⟩⟩𝑖,𝑗+1/2 −𝐷𝑦

𝑖,𝑗−1/2⟨⟨𝑢⟩⟩𝑖,𝑗−1/2

∆𝑦

)︂
d𝑡.

After performing integration and summation by parts for temporal and spatial variables respectively we get

𝐴1 +𝐴2 +𝐴3 +𝐵1 +𝐵2 = 0, (3.9)

where we can write

𝐴1 := −
∫︁ 𝑇

0

∆𝑥∆𝑦
∑︁
𝑖,𝑗

𝑢𝑖,𝑗
d
d𝑡
𝜙𝑖,𝑗 d𝑡,

𝐴2 := −
∫︁ 𝑇

0

∆𝑥∆𝑦
∑︁
𝑖,𝑗

𝐹 𝑥𝑖+1/2,𝑗

𝜙𝑖+1,𝑗 − 𝜙𝑖,𝑗
∆𝑥

d𝑡,

𝐴3 := −
∫︁ 𝑇

0

∆𝑥∆𝑦
∑︁
𝑖,𝑗

𝐹 𝑦𝑖,𝑗+1/2

𝜙𝑖,𝑗+1 − 𝜙𝑖,𝑗
∆𝑦

d𝑡,

𝐵1 :=
∫︁ 𝑇

0

∆𝑥∆𝑦
∑︁
𝑖,𝑗

𝐷𝑥
𝑖+1/2,𝑗⟨⟨𝑢⟩⟩𝑖+1/2,𝑗

𝜙𝑖+1,𝑗 − 𝜙𝑖,𝑗
∆𝑥

d𝑡,

𝐵2 :=
∫︁ 𝑇

0

∆𝑥∆𝑦
∑︁
𝑖,𝑗

𝐷𝑦
𝑖,𝑗+1/2⟨⟨𝑢⟩⟩𝑖,𝑗+1/2

𝜙𝑖,𝑗+1 − 𝜙𝑖,𝑗
∆𝑦

d𝑡.

We can write 𝐴1 = −
∫︀ 𝑇
0

∫︀
R
∫︀

R 𝑢
Δ𝜕𝑡𝜙

Δ d𝑥 d𝑦 d𝑡, and thanks to the convergence of 𝑢Δ to 𝑢 from Lemma 3.6
and convergence of 𝜙Δ to 𝜙 a.e., we have limΔ𝑥,Δ𝑦→0𝐴

1 = −
∫︀ 𝑇
0

∫︀
R2 𝑢𝜕𝑡𝜙d𝑥 d𝑦 d𝑡.

For the second term 𝐴2, we denote for the sake of simplicity ∆𝑥𝜓(𝑥, 𝑦, 𝑡) = 𝜓(𝑥+Δ𝑥,𝑦,𝑡)−𝜓(𝑥,𝑦,𝑡)
Δ𝑥 , for any

function 𝜓. Since 𝐹 𝑥 is a two-point flux, we can write

𝐴2 = −
∫︁ 𝑇

0

∫︁
R2
𝐹 𝑥
(︀
𝑢Δ(𝑥, 𝑦, 𝑡), 𝑢Δ(𝑥+ ∆𝑥, 𝑦, 𝑡)

)︀
∆𝑥𝜙

Δ(𝑥, 𝑦, 𝑡) d(𝑥, 𝑦) d𝑡

= 𝐴2,1 +𝐴2,2,

where

𝐴2,1 := −
∫︁ 𝑇

0

∫︁
R2
𝑓𝑥
(︀
𝑢Δ(𝑥, 𝑦, 𝑡)

)︀
∆𝑥𝜙

Δ(𝑥, 𝑦, 𝑡) d(𝑥, 𝑦) d𝑡,

𝐴2,2 :=
∫︁ 𝑇

0

∫︁
R2

(︁
𝑓𝑥
(︀
𝑢Δ(𝑥, 𝑦, 𝑡)

)︀
− 𝐹 𝑥

(︀
𝑢Δ(𝑥, 𝑦, 𝑡), 𝑢Δ(𝑥+ ∆𝑥, 𝑦, 𝑡)

)︀)︁
∆𝑥𝜙

Δ(𝑥, 𝑦, 𝑡) d(𝑥, 𝑦) d𝑡.
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Thanks to the convergence of 𝑢Δ from Lemma 3.6 and the convergence of ∆𝑥𝜙
Δ to 𝜕𝑥𝜙 we have

𝐴2,1 → −
∫︁ 𝑇

0

∫︁
R2
𝑓𝑥(𝑢)𝜕𝑥𝜙d(𝑥, 𝑦) d𝑡 as Δ → 0. (3.10)

For the term 𝐴2,2 we apply the Hölder inequality and Lemma 3.6 to get

|𝐴2,2| 6
∫︁ 𝑇

0

∫︁
R2

⃒⃒⃒
𝑓𝑥
(︀
𝑢Δ(𝑥, 𝑦, 𝑡)

)︀
− 𝐹 𝑥

(︀
𝑢Δ(𝑥, 𝑦, 𝑡), 𝑢Δ(𝑥+ ∆𝑥, 𝑦, 𝑡)

)︀⃒⃒⃒⃒⃒
∆𝑥𝜙

Δ(𝑥, 𝑦, 𝑡)
⃒⃒
d(𝑥, 𝑦) d𝑡

(using Lipschitz continuity of 𝐹 𝑥)

6 𝐶
∫︁ 𝑇

0

∫︁
R2

⃒⃒
𝑢Δ(𝑥+ ∆𝑥, 𝑦, 𝑡)− 𝑢Δ(𝑥, 𝑦, 𝑡)

⃒⃒⃒⃒
∆𝑥𝜙

Δ(𝑥, 𝑦, 𝑡)
⃒⃒
d(𝑥, 𝑦) d𝑡

6 𝐶

(︂∫︁ 𝑇

0

∫︁
R2

⃒⃒
∆𝑥𝜙

Δ
⃒⃒ 3
2 d(𝑥, 𝑦) d𝑡

)︂ 2
3
(︂∫︁ 𝑇

0

∑︁
𝑖,𝑗

⃒⃒
[[𝑢]]𝑖+1/2,𝑗

⃒⃒3∆𝑥∆𝑦 d𝑡
)︂ 1

3

6 𝐶‖𝜕𝑥𝜙‖
𝐿

3
2 (R2×[0,𝑇 ))

(︂∫︁ 𝑇

0

∑︁
𝑖,𝑗

⃒⃒
[[𝑢]]𝑖+1/2,𝑗

⃒⃒3∆𝑥∆𝑦 d𝑡
)︂ 1

3

→ 0

as ∆𝑥,∆𝑦 → 0 by (2.15a). Analogously, 𝐴3 → −
∫︀ 𝑇
0

∫︀
R2 𝑓

𝑦(𝑢)𝜕𝑦𝜙d𝑥 d𝑦 d𝑡 as ∆𝑥,∆𝑦 → 0. We conclude that

𝐴→ −
∫︁ 𝑇

0

∫︁
R2

[︁
𝑢𝜕𝑡𝜙+ 𝑓(𝑢) · ∇𝜙

]︁
d(𝑥, 𝑦) d𝑡 as ∆𝑥,∆𝑦 → 0. (3.11)

It remains to show that 𝐵1, 𝐵2 in (3.9) vanish as ∆𝑥,∆𝑦 → 0. Indeed,

|𝐵1| 6 𝐷
∫︁ 𝑇

0

∆𝑥∆𝑦
∑︁
𝑖,𝑗

⃒⃒
⟨⟨𝑢⟩⟩𝑖+1/2,𝑗

⃒⃒⃒⃒⃒⃒𝜙𝑖+1,𝑗 − 𝜙𝑖,𝑗
∆𝑥

⃒⃒⃒⃒
d𝑡

(by (2.13))

6 𝐶𝐷‖𝜂′′‖𝐿∞(R)

∫︁ 𝑇

0

∆𝑥∆𝑦
∑︁
𝑖,𝑗

⃒⃒
[[𝑢]]𝑖+1/2,𝑗

⃒⃒⃒⃒⃒⃒𝜙𝑖+1,𝑗 − 𝜙𝑖,𝑗
∆𝑥

⃒⃒⃒⃒
d𝑡

6 𝐶𝐷‖𝜂′′‖𝐿∞(R)‖𝜕𝑥𝜙‖𝐿3/2(R2×[0,𝑇 ])

⎛⎝∫︁ 𝑇

0

∆𝑥∆𝑦
∑︁
𝑖,𝑗

⃒⃒
[[𝑢]]𝑖+1/2,𝑗

⃒⃒3 d𝑡

⎞⎠1/3

→ 0

as ∆𝑥,∆𝑦 → 0, and likewise for 𝐵2. This completes the proof. �

Although we are not able to show that the TECNO scheme converges to the entropy solution, we will show
that the weak solution 𝑢 satisfies at least one of the entropy conditions.

Lemma 3.8. With the same assumptions as in Lemma 3.6, the limit 𝑢 satisfies

𝜕𝑡𝜂(𝑢) +∇ · 𝑞(𝑢) 6 0. (3.12)
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Proof. As in (2.6) in Lemma 3.5 we can write

d
d𝑡
𝜂(𝑢𝑖,𝑗) +

𝑄̃𝑥𝑖+1/2,𝑗 − 𝑄̃𝑥𝑖−1/2,𝑗

∆𝑥
+
𝑄̃𝑦𝑖,𝑗+1/2 − 𝑄̃𝑦𝑖,𝑗−1/2

∆𝑦
=
𝑟𝑥𝑖+1/2,𝑗 + 𝑟𝑥𝑖−1/2,𝑗

2∆𝑥
+
𝑟𝑦𝑖,𝑗+1/2 + 𝑟𝑦𝑖,𝑗−1/2

2∆𝑦
(3.13)

where, in this particular case, the entropy residuals 𝑟 on the right-hand side are all nonpositive (see e.g. [4,7,19]).
Multiplying the above by a nonnegative test function 𝜙 ∈ 𝐶1

𝑐 (R2 × (0, 𝑇 )) and proceeding in the same manner
as in Lemma 3.7 we obtain (3.12) in the sense of distribution. �

4. Conclusions and outlook

We prove convergence of the second-order, semi-discrete TECNO scheme in two space dimensions to a weak
solution of the hyperbolic conservation law (1.1); this can easily be generalized to any number of space dimen-
sions. The proof of this result relies on estimating the entropy residual appropriately using the (weak) TV bound
obtained from entropy stability with respect to one entropy. Invoking this estimate, along with an assumption
of 𝐿∞ boundedness, precompactness of the sequence of approximate solutions is shown using a corollary derived
from a compensated compactness result due to Panov. Finally, to show that the limit function obtained due to
the precompactness property is indeed a weak solution of (1.1), a “Lax–Wendroff” type argument is used.

Convergence proofs of even higher-order (i.e. more than second order) TECNO scheme in multiple space
dimensions, to a weak solution of the equation (1.1) are still unanswered. In our opinion, this is largely due to
the unavailability of weak TV estimates of the type (2.15a), as well as an appropriate version of Lemma 3.5.
This should be an object of interest for future research. Last, but not least, one key estimate to prove (2.15b),
and consequently (2.15a), is (2.16). For even higher-order ENO reconstruction, the estimate (2.16) (the “ENO-
conjecture”) is still not established and remains an open problem.
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